当前位置:首页 - 产品推广 - 正文 推广软件,让推广事半功倍!

营销哪里有,「今日头条seo是什么意思」 今日头条是什么意思

产品推广

营销哪里有

今日头条seo是什么意思: 今日头条是什么意思

你好今日头条意思是:版面上占有最重要位置的,消息上最有爆炸性的,价值上最能给新闻机构赚钱的。望采纳

其他答案:您好,这个是今日头条为了原创作者更好的写作,写作的同时能够从中赚取一些广告费用开发的自营广告位。

其他答案:是一款新闻类聚合App,说白了,就是手机看新闻的软件

其他答案:就是特大的新闻。当用户使用微博、QQ等社交账号登录今日头条时,它能5秒钟内通过算法解读使用者的兴趣DNA,用户每次动作后,10秒更新用户模型,越用越懂用户,从而进行精准的阅读内容推荐。

其他答案:UC头条点击左上角你的头像…左侧出来菜单…里面有收藏 最近今日头条的推荐命中率太低了。以前十条中有七八条,现在十几条才有一条想打开,都比不上UC头条推荐的效果,UC头条比今日头条好多了。

今日头条seo是什么意思: 什么是SEO(seo是什么意思)? 爱问知识人

SEO是Search Engine Optimization的缩写,用英文描述是to use some technics to make your website in the top places in Search Engine when somebody is using Search Engine to find something,翻译成中文就是“搜索引擎优化”,一般可简称为搜索优化。与之相关的搜索知识还有Search Engine Positioning(搜索引擎定位)、Search Engine Ranking(搜索引擎排名)。 SEO的主要工作是通过了解各类搜索引擎如何抓取互联网页面、如何进行索引以及如何确定其对某一特定关键词的搜索结果排名等技术,来对网页进行相关的优化,使其提高搜索引擎排名,从而提高网站访问量,最终提升网站的销售能力或宣传能力的技术。 收起回答

其他答案:SEO的中文意思是搜索引擎优化。我们在百度搜索一个关键词(如:春季衬衣),搜索结果往往有很多页,而用户一般只关注排在第一页的几位。SEO是根据搜索引擎的排名规律优化网站,

其他答案:SEO 是英文search engine optimization的缩写,其中文意思是搜索引擎优化。而从事这方面工作的就是search engine optimizer,搜索引擎优化师。他们利用工具或者其他的各种手法使自己的合搜索引擎的搜索规则从而获得较好的排名(也就是常说的网站优化)。 无止境地追求较前排名是SEO们一世的目标。 在网络营销中,搜索引擎优化排名是一种非常重要的手段,SEO主要就是通过对网站的结构,标签,排版等各方面的优化,使Google等搜索引擎更容易搜索网站的内容,并且让网站的各个网页在GOOGLE等搜索引擎中获得较高的评分,从而获得较好的排名。 ■中国SEO现状 个事物的发展都会经过以下几个阶段,萌芽、初步发展、高速发展、成熟、衰落。中国2003年才起步,正处于初步发展阶段。具体特征:1、从事这方面的人不多,也不专业。2、未形成规模。3、多是作坊式经营,即主要是对本公司的网站进行一定的修改,就说成所谓为网站优化。 4、有专业的公司,但规模不大、技术也一般。 ■SEO在国外 国外这方面发展得比较早,早在97年左右就有人从事相关方面的工作。如果按上述的几个阶段来说,应该是处于高速发展的阶段了。他们有专业的人员、专业的公司(而且是规模很大)从事搜索引擎研究、优化等工作。 无论从哪方面来说都处于绝大的优势。 在国外,搜索引擎优化已经成为一个行业,在中国的SEO行业从2003年才正是起步。 ■ 不知在什么时候,在互联网上人们开始习惯使用搜索引擎找所需的东西。可能是yahoo出现时,或者更早些。SEO也因此得了飞速的发展。 今时今日,人们不但没有改变这种习惯,反而变本加厉。从国内外的现状来看,竞争都很激烈。在竞争中产生优胜劣汰,这些生存者实力雄厚。国内处于起步的的SEO们在不断的探索,希望能找到一条正确的道路。在进军国际市场前必然会进行一场优胜劣汰的洗礼。前进的过程的坎坷的,但前景是光明的。 回答者:ss6126 - 同进士出身 六级。

今日头条seo是什么意思: 在今日头条做SEO付费栏目不知道是否可以赚钱?-百度知道

展开全部 您好,主要针对于您所擅长的方向做头条的。只要是有人需要的,有输出价值和学习价值的内容,都是可以做的。不过您需要先认证开通付费栏目的权限才可以。希望能够帮助到您。...

今日头条seo是什么意思: 今日头条自媒体微头条是什么意思?

通过微头条你可以发布文字,图片或者视频内容。类似于微博或者朋友圈,只不过微头条有今日头条的推荐机制。 今日头条介绍 1. 是一款基于数据挖掘的推荐引擎产品,它为用户推荐有价值的、个性化的信息,提供连接人与信息的新型服务,是国内移动互联网领域成长最快的产品服务之一。 2. 它由国内互联网创业者张一鸣于2012年3月创建,于2012年8月发布第一个版本,截至2016年10月底,今日头条激活用户数已经超过6亿,月活跃用户数超过1.4亿,日活跃用户数超过6600万,单用户日均使用时长超过76分钟,日均启动次数约9次。 3. 另外,截至2016年11月底,已有超过39万个个人、组织开设头条号。 收起回答

其他答案:你好, 首先百度搜索“今日头条”进入官网,点右上角的头条号,进行注册 根据步骤导引,一步步操作。你将来到类型选择页面,我们选个人自媒体(有实力资源的可以注册其他) 头条号的审核非常严格,你的名称,介绍和领域要匹配好否则无法通过。这里小编发现一领域100%通过,而且不需要什么资质证书。那就是娱乐电影类目,因为头条在电影市场,需要很多影评人,所以才刚开始,很容易通过。 把资料都填好,不需要写很多,不要用自己的头像当头条头像。提交即可,一般提交后当天就会给你审核,周末可能会慢点 5 头条号的流量还是可以的。小编第一天申请通过就写了一篇文章,12小时不到阅读量就上1718,被推荐21095。还是挺给力的,慢慢把号养好,日阅读量上10万不成问题的 希望我的回答你能满意,望采纳哟。

今日头条seo是什么意思:今日头条是什么?

一个互联网公司

今日头条seo是什么意思:今日头条的核心技术细节是什么?

头条不是第一个做新闻推荐的,但是技术上今日头条有几个特别有想象力的点。

推荐冷启动 cold start
推荐系统里面的冷启动一直是一个很大的问题。
当新用户加入时,一般需要给用户一个初始兴趣值。

比较常见的做法,比如quora,zhihu,pinterest是让人手选感兴趣的话题;另外一个做法是给一些初始歌曲或者电影让人选喜欢或者不喜欢,然后生成一个初始值。无论哪一个做法,用户的行为数据都不足以产生高质量的推荐。

以pinterest为例,因为主要用户是女性,所以初始值大部分推荐的内容都是女装时尚的。我大约认真pin了两个月,才把推荐内容洗到直男的科技建筑。

而头条将微博账户和兴趣绑定在一起,所以当用微博帐号登录的时候,一开始的初始兴趣分布就和人的微博记录匹配上了。
今日头条则选择了另一种解决方案——通过对用户微博账号的分析建立一个“兴趣图谱”,即根据用户在微博上发布的内容及其所属类别、用户自标签、社交关系、社交行为、参与的群组、机型、使用时间等来数据源来推断出用户的兴趣点有哪些。社交关系、社交行为即用户和用户之间的交流状况,可以根据二者间的共同好友数、相互评论熟、@数等来做度量。
泛阅读产品“今日头条”是如何基于微博兴趣图谱做个性化推荐的?
说起来很简单,做起来也并不复杂,其实头条也不是第一个做这个的。
但有意思的一点是头条主打的是泛阅读,所以,推荐即便比较一般,因为推荐的量大,用户还是非常容易在推荐的内容里找到感兴趣的。相应的,很多用类似的思路做精品阅读的,基本都做不下去。

类似的思路让我想起了orbeus的phototime,人脸识别并不难,但是让用户手机上的照片圈出每一个人脸是什么人却是很大的工作量。 phototime通过导入用户facebook上的照片作为标注结果,然后解决了冷启动。


阅读内容的原始积累
今日头条本身并没有产生新闻的媒体部门,所以将整个互联网的新闻都纳入了自己的信息源。

虽然这一块惹来很多版权纠纷,但是个人觉得并不是所有的网站都排斥被今日头条抓取了内容,因为给很多网站带去了流量。值得商榷的是网页重构,虽说提高了用户体验,但是侵犯了那些媒体公司的利益。

在法律更健全的地方,这样操作就会有风险,以apple自带的股票app,或者yahoo finance,所有股票新闻都只是一个链接和标题,要老老实实链到第三方的新闻出处。

今日头条seo是什么意思:今日头条推荐算法原理



今日头条的内容分发算法一直颇神秘低调。自12年开发运营起进四次改版,从未透露核心内容。


2018年1月,今日头条资深算法架构师曹欢欢博士,终于首次公开今日头条的算法原理,以期推动整个行业问诊算法、建言算法,希望消除各界对算法的误解。


据悉,今日头条的信息推荐算法目前服务全球亿万用户。


以下为曹欢欢关于《今日头条算法原理》的分享内容(已获今日头条授权):


▲3分钟了解今日头条推荐算法原理


本次分享将主要介绍今日头条推荐系统概览以及内容分析、用户标签、评估分析,内容安全等原理。






01 系统概览





推荐系统,如果用形式化的方式去描述实际上是拟合一个用户对内容满意度的函数,这个函数需要输入三个维度的变量。第一个维度是内容。头条现在已经是一个综合内容平台,图文、视频、UGC小视频、问答、微头条,每种内容有很多自己的特征,需要考虑怎样提取不同内容类型的特征做好推荐。第二个维度是用户特征。包括各种兴趣标签,职业、年龄、性别等,还有很多模型刻划出的隐式用户兴趣等。第三个维度是环境特征。这是移动互联网时代推荐的特点,用户随时随地移动,在工作场合、通勤、旅游等不同的场景,信息偏好有所偏移。结合三方面的维度,模型会给出一个预估,即推测推荐内容在这一场景下对这一用户是否合适。


这里还有一个问题,如何引入无法直接衡量的目标?


推荐模型中,点击率、阅读时间、点赞、评论、转发包括点赞都是可以量化的目标,能够用模型直接拟合做预估,看线上提升情况可以知道做的好不好。但一个大体量的推荐系统,服务用户众多,不能完全由指标评估,引入数据指标以外的要素也很重要。





比如广告和特型内容频控。像问答卡片就是比较特殊的内容形式,其推荐的目标不完全是让用户浏览,还要考虑吸引用户回答为社区贡献内容。这些内容和普通内容如何混排,怎样控制频控都需要考虑。


此外,平台出于内容生态和社会责任的考量,像低俗内容的打压,标题党、低质内容的打压,重要新闻的置顶、加权、强插,低级别账号内容降权都是算法本身无法完成,需要进一步对内容进行干预。


下面我将简单介绍在上述算法目标的基础上如何对其实现。





前面提到的公式y = F(Xi ,Xu ,Xc),是一个很经典的监督学习问题。可实现的方法有很多,比如传统的协同过滤模型,监督学习算法Logistic Regression模型,基于深度学习的模型,Factorization Machine和GBDT等。


一个优秀的工业级推荐系统需要非常灵活的算法实验平台,可以支持多种算法组合,包括模型结构调整。因为很难有一套通用的模型架构适用于所有的推荐场景。现在很流行将LR和DNN结合,前几年Facebook也将LR和GBDT算法做结合。今日头条旗下几款产品都在沿用同一套强大的算法推荐系统,但根据业务场景不同,模型架构会有所调整。





模型之后再看一下典型的推荐特征,主要有四类特征会对推荐起到比较重要的作用。


第一类是相关性特征,就是评估内容的属性和与用户是否匹配。显性的匹配包括关键词匹配、分类匹配、来源匹配、主题匹配等。像FM模型中也有一些隐性匹配,从用户向量与内容向量的距离可以得出。


第二类是环境特征,包括地理位置、时间。这些既是bias特征,也能以此构建一些匹配特征。


第三类是热度特征。包括全局热度、分类热度,主题热度,以及关键词热度等。内容热度信息在大的推荐系统特别在用户冷启动的时候非常有效。


第四类是协同特征,它可以在部分程度上帮助解决所谓算法越推越窄的问题。协同特征并非考虑用户已有历史。而是通过用户行为分析不同用户间相似性,比如点击相似、兴趣分类相似、主题相似、兴趣词相似,甚至向量相似,从而扩展模型的探索能力。





模型的训练上,头条系大部分推荐产品采用实时训练。实时训练省资源并且反馈快,这对信息流产品非常重要。用户需要行为信息可以被模型快速捕捉并反馈至下一刷的推荐效果。我们线上目前基于storm集群实时处理样本数据,包括点击、展现、收藏、分享等动作类型。模型参数服务器是内部开发的一套高性能的系统,因为头条数据规模增长太快,类似的开源系统稳定性和性能无法满足,而我们自研的系统底层做了很多针对性的优化,提供了完善运维工具,更适配现有的业务场景。


目前,头条的推荐算法模型在世界范围内也是比较大的,包含几百亿原始特征和数十亿向量特征。整体的训练过程是线上服务器记录实时特征,导入到Kafka文件队列中,然后进一步导入Storm集群消费Kafka数据,客户端回传推荐的label构造训练样本,随后根据最新样本进行在线训练更新模型参数,最终线上模型得到更新。这个过程中主要的延迟在用户的动作反馈延时,因为文章推荐后用户不一定马上看,不考虑这部分时间,整个系统是几乎实时的。





但因为头条目前的内容量非常大,加上小视频内容有千万级别,推荐系统不可能所有内容全部由模型预估。所以需要设计一些召回策略,每次推荐时从海量内容中筛选出千级别的内容库。召回策略最重要的要求是性能要极致,一般超时不能超过50毫秒。





召回策略种类有很多,我们主要用的是倒排的思路。离线维护一个倒排,这个倒排的key可以是分类,topic,实体,来源等,排序考虑热度、新鲜度、动作等。线上召回可以迅速从倒排中根据用户兴趣标签对内容做截断,高效的从很大的内容库中筛选比较靠谱的一小部分内容。





营销哪里有,qq群微信推广,关键词优化公司,免费推广的平台,医疗app推广方案,什么是运营,实用的网络营销服务平台,微信营销方案,微商怎么推广怎么找客源,怎样营销自己的产品,查询,网上产品推广怎么做,影视广告广告公司,学网站推广,广告及关键词,河源网络推广,怎么加好友,网站关键词优化排名公司,怎么样做成功的微商,国外网站推广方案,新媒体时代,微信精确加粉,推广新产品的方法,竞价推广怎么样,如何做产品网络推广,泉州网站推广,广告如何做网络推广,一个新公司如何推广,广告公司注册资金,产品营销创新,公司如何做推广,营销哪里有。


02 内容分析


内容分析包括文本分析,图片分析和视频分析。头条一开始主要做资讯,今天我们主要讲一下文本分析。文本分析在推荐系统中一个很重要的作用是用户兴趣建模。没有内容及文本标签,无法得到用户兴趣标签。举个例子,只有知道文章标签是互联网,用户看了互联网标签的文章,才能知道用户有互联网标签,其他关键词也一样。





另一方面,文本内容的标签可以直接帮助推荐特征,比如魅族的内容可以推荐给关注魅族的用户,这是用户标签的匹配。如果某段时间推荐主频道效果不理想,出现推荐窄化,用户会发现到具体的频道推荐(如科技、体育、娱乐、军事等)中阅读后,再回主feed,推荐效果会更好。因为整个模型是打通的,子频道探索空间较小,更容易满足用户需求。只通过单一信道反馈提高推荐准确率难度会比较大,子频道做的好很重要。而这也需要好的内容分析。





上图是今日头条的一个实际文本case。可以看到,这篇文章有分类、关键词、topic、实体词等文本特征。当然不是没有文本特征,推荐系统就不能工作,推荐系统最早期应用在Amazon,甚至沃尔玛时代就有,包括Netfilx做视频推荐也没有文本特征直接协同过滤推荐。但对资讯类产品而言,大部分是消费当天内容,没有文本特征新内容冷启动非常困难,协同类特征无法解决文章冷启动问题。





今日头条推荐系统主要抽取的文本特征包括以下几类。首先是语义标签类特征,显式为文章打上语义标签。这部分标签是由人定义的特征,每个标签有明确的意义,标签体系是预定义的。此外还有隐式语义特征,主要是topic特征和关键词特征,其中topic特征是对于词概率分布的描述,无明确意义;而关键词特征会基于一些统一特征描述,无明确集合。





另外文本相似度特征也非常重要。在头条,曾经用户反馈最大的问题之一就是为什么总推荐重复的内容。这个问题的难点在于,每个人对重复的定义不一样。举个例子,有人觉得这篇讲皇马和巴萨的文章,昨天已经看过类似内容,今天还说这两个队那就是重复。但对于一个重度球迷而言,尤其是巴萨的球迷,恨不得所有报道都看一遍。解决这一问题需要根据判断相似文章的主题、行文、主体等内容,根据这些特征做线上策略。


同样,还有时空特征,分析内容的发生地点以及时效性。比如武汉限行的事情推给北京用户可能就没有意义。最后还要考虑质量相关特征,判断内容是否低俗,色情,是否是软文,鸡汤?




上图是头条语义标签的特征和使用场景。他们之间层级不同,要求不同。





分类的目标是覆盖全面,希望每篇内容每段视频都有分类;而实体体系要求精准,相同名字或内容要能明确区分究竟指代哪一个人或物,但不用覆盖很全。概念体系则负责解决比较精确又属于抽象概念的语义。这是我们最初的分类,实践中发现分类和概念在技术上能互用,后来统一用了一套技术架构。





目前,隐式语义特征已经可以很好的帮助推荐,而语义标签需要持续标注,新名词新概念不断出现,标注也要不断迭代。其做好的难度和资源投入要远大于隐式语义特征,那为什么还需要语义标签?有一些产品上的需要,比如频道需要有明确定义的分类内容和容易理解的文本标签体系。语义标签的效果是检查一个公司NLP技术水平的试金石。





今日头条推荐系统的线上分类采用典型的层次化文本分类算法。最上面Root,下面第一层的分类是像科技、体育、财经、娱乐,体育这样的大类,再下面细分足球、篮球、乒乓球、网球、田径、游泳等,足球再细分国际足球、中国足球,中国足球又细分中甲、中超、国家队等,相比单独的分类器,利用层次化文本分类算法能更好地解决数据倾斜的问题。有一些例外是,如果要提高召回,可以看到我们连接了一些飞线。这套架构通用,但根据不同的问题难度,每个元分类器可以异构,像有些分类SVM效果很好,有些要结合CNN,有些要结合RNN再处理一下。





上图是一个实体词识别算法的case。基于分词结果和词性标注选取候选,期间可能需要根据知识库做一些拼接,有些实体是几个词的组合,要确定哪几个词结合在一起能映射实体的描述。如果结果映射多个实体还要通过词向量、topic分布甚至词频本身等去歧,最后计算一个相关性模型。



03 用户标签


内容分析和用户标签是推荐系统的两大基石。内容分析涉及到机器学习的内容多一些,相比而言,用户标签工程挑战更大。





今日头条常用的用户标签包括用户感兴趣的类别和主题、关键词、来源、基于兴趣的用户聚类以及各种垂直兴趣特征(车型,体育球队,股票等)。还有性别、年龄、地点等信息。性别信息通过用户第三方社交账号登录得到。年龄信息通常由模型预测,通过机型、阅读时间分布等预估。常驻地点来自用户授权访问位置信息,在位置信息的基础上通过传统聚类的方法拿到常驻点。常驻点结合其他信息,可以推测用户的工作地点、出差地点、旅游地点。这些用户标签非常有助于推荐。





当然最简单的用户标签是浏览过的内容标签。但这里涉及到一些数据处理策略。主要包括:一、过滤噪声。通过停留时间短的点击,过滤标题党。二、热点惩罚。对用户在一些热门文章(如前段时间PG One的新闻)上的动作做降权处理。理论上,传播范围较大的内容,置信度会下降。三、时间衰减。用户兴趣会发生偏移,因此策略更偏向新的用户行为。因此,随着用户动作的增加,老的特征权重会随时间衰减,新动作贡献的特征权重会更大。四、惩罚展现。如果一篇推荐给用户的文章没有被点击,相关特征(类别,关键词,来源)权重会被惩罚。当然同时,也要考虑全局背景,是不是相关内容推送比较多,以及相关的关闭和dislike信号等。





用户标签挖掘总体比较简单,主要还是刚刚提到的工程挑战。头条用户标签第一版是批量计算框架,流程比较简单,每天抽取昨天的日活用户过去两个月的动作数据,在Hadoop集群上批量计算结果。





但问题在于,随着用户高速增长,兴趣模型种类和其他批量处理任务都在增加,涉及到的计算量太大。2014年,批量处理任务几百万用户标签更新的Hadoop任务,当天完成已经开始勉强。集群计算资源紧张很容易影响其它工作,集中写入分布式存储系统的压力也开始增大,并且用户兴趣标签更新延迟越来越高。





面对这些挑战。2014年底今日头条上线了用户标签Storm集群流式计算系统。改成流式之后,只要有用户动作更新就更新标签,CPU代价比较小,可以节省80%的CPU时间,大大降低了计算资源开销。同时,只需几十台机器就可以支撑每天数千万用户的兴趣模型更新,并且特征更新速度非常快,基本可以做到准实时。这套系统从上线一直使用至今。





当然,我们也发现并非所有用户标签都需要流式系统。像用户的性别、年龄、常驻地点这些信息,不需要实时重复计算,就仍然保留daily更新。



04 评估分析


上面介绍了推荐系统的整体架构,那么如何评估推荐效果好不好?


有一句我认为非常有智慧的话,“一个事情没法评估就没法优化”。对推荐系统也是一样。





事实上,很多因素都会影响推荐效果。比如侯选集合变化,召回模块的改进或增加,推荐特征的增加,模型架构的改进在,算法参数的优化等等,不一一举例。评估的意义就在于,很多优化最终可能是负向效果,并不是优化上线后效果就会改进。





全面的评估推荐系统,需要完备的评估体系、强大的实验平台以及易用的经验分析工具。所谓完备的体系就是并非单一指标衡量,不能只看点击率或者停留时长等,需要综合评估。过去几年我们一直在尝试,能不能综合尽可能多的指标合成唯一的评估指标,但仍在探索中。目前,我们上线还是要由各业务比较资深的同学组成评审委员会深入讨论后决定。


很多公司算法做的不好,并非是工程师能力不够,而是需要一个强大的实验平台,还有便捷的实验分析工具,可以智能分析数据指标的置信度。





一个良好的评估体系建立需要遵循几个原则,首先是兼顾短期指标与长期指标。我在之前公司负责电商方向的时候观察到,很多策略调整短期内用户觉得新鲜,但是长期看其实没有任何助益。


其次,要兼顾用户指标和生态指标。今日头条作为内容分创作平台,既要为内容创作者提供价值,让他更有尊严的创作,也有义务满足用户,这两者要平衡。还有广告主利益也要考虑,这是多方博弈和平衡的过程。


另外,要注意协同效应的影响。实验中严格的流量隔离很难做到,要注意外部效应。





强大的实验平台非常直接的优点是,当同时在线的实验比较多时,可以由平台自动分配流量,无需人工沟通,并且实验结束流量立即回收,提高管理效率。这能帮助公司降低分析成本,加快算法迭代效应,使整个系统的算法优化工作能够快速往前推进。





这是头条A/B Test实验系统的基本原理。首先我们会做在离线状态下做好用户分桶,然后线上分配实验流量,将桶里用户打上标签,分给实验组。举个例子,开一个10%流量的实验,两个实验组各5%,一个5%是基线,策略和线上大盘一样,另外一个是新的策略。





实验过程中用户动作会被搜集,基本上是准实时,每小时都可以看到。但因为小时数据有波动,通常是以天为时间节点来看。动作搜集后会有日志处理、分布式统计、写入数据库,非常便捷。





在这个系统下工程师只需要设置流量需求、实验时间、定义特殊过滤条件,自定义实验组ID。系统可以自动生成:实验数据对比、实验数据置信度、实验结论总结以及实验优化建议。





当然,只有实验平台是远远不够的。线上实验平台只能通过数据指标变化推测用户体验的变化,但数据指标和用户体验存在差异,很多指标不能完全量化。很多改进仍然要通过人工分析,重大改进需要人工评估二次确认。



05 内容安全





最后要介绍今日头条在内容安全上的一些举措。头条现在已经是国内最大的内容创作与分发凭条,必须越来越重视社会责任和行业领导者的责任。如果1%的推荐内容出现问题,就会产生较大的影响。


因此头条从创立伊始就把内容安全放在公司最高优先级队列。成立之初,已经专门设有审核团队负责内容安全。当时研发所有客户端、后端、算法的同学一共才不到40人,头条非常重视内容审核。





现在,今日头条的内容主要来源于两部分,一是具有成熟内容生产能力的PGC平台,一是UGC用户内容,如问答、用户评论、微头条。这两部分内容需要通过统一的审核机制。如果是数量相对少的PGC内容,会直接进行风险审核,没有问题会大范围推荐。UGC内容需要经过一个风险模型的过滤,有问题的会进入二次风险审核。审核通过后,内容会被真正进行推荐。这时如果收到一定量以上的评论或者举报负向反馈,还会再回到复审环节,有问题直接下架。整个机制相对而言比较健全,作为行业领先者,在内容安全上,今日头条一直用最高的标准要求自己。





分享内容识别技术主要鉴黄模型,谩骂模型以及低俗模型。今日头条的低俗模型通过深度学习算法训练,样本库非常大,图片、文本同时分析。这部分模型更注重召回率,准确率甚至可以牺牲一些。谩骂模型的样本库同样超过百万,召回率高达95%+,准确率80%+。如果用户经常出言不讳或者不当的评论,我们有一些惩罚机制。





泛低质识别涉及的情况非常多,像假新闻、黑稿、题文不符、标题党、内容质量低等等,这部分内容由机器理解是非常难的,需要大量反馈信息,包括其他样本信息比对。目前低质模型的准确率和召回率都不是特别高,还需要结合人工复审,将阈值提高。目前最终的召回已达到95%,这部分其实还有非常多的工作可以做。头条人工智能实验室李航老师目前也在和密歇根大学共建科研项目,设立谣言识别平台。


以上便是头条推荐系统的原理全部分享了,此文授权转载自公众号今日头条


知乎专栏—

袁帅:互联网数据分析运营

运营者:袁帅,互联网数据分析运营实践者,会点网事业合伙人,运营负责人。会展业信息化、数字化专家。CEAC国家信息化计算机教育认证:网络营销师,SEM搜索引擎营销师,SEO工程师。数据分析师,永洪数据科学研究院MVP。中国电子商务协会认证:中国电子商务职业经理人,畅销书《互联网销售宝典》联合出品人之一。中国国际贸易促进委员会:今日会展会员联盟VIP个人会员,全经联园区委秘书处成员,中国低碳智慧园区联盟理事,周五咖啡媒体人俱乐部发起合伙人。百度VIP认证站长,百度文库认证作者,百度经验签约作者,百家号/一点资讯/大鱼号/搜狐号/头条号/知乎专栏/艾瑞专栏等媒体平台入驻作者,互联网数据官(iCDO)原创作者,互联网营销官CMO原创作者。

今日头条seo是什么意思:今日头条seo如何优化?如何做搜索靠前呢?

做关键字是最常用的手段,现在有很多公司都在做SEO优化

今日头条seo是什么意思:今日头条的算法是什么?

今日头条算法推荐系统,主要输入三个维度的变量。一是内容特征,图文、视频、UGC小视频、问答、微头条等,每种内容有很多自己的特征,需要分别提取;二是用户特征,包括兴趣标签、职业、年龄、性别、机型等,以及很多模型刻画出的用户隐藏兴趣。三是环境特征,不同的时间不同的地点不同的场景(工作/通勤/旅游等),用户对信息的偏好有所不同。结合这三方面纬度,今日头条的推荐模型做预估,这个内容在这个场景下对这个用户是否合适

今日头条seo是什么意思:今日头条,广告优化师是什么部门?

主要还是客服的工作,看你是在小客户部还是大客,小客主要解决客户的广告投放问题以及物料审核问题,因为小客手里面要优化的客户还是挺多的,基本上帮客户深入优化的机会不多,如果想提升自己技术的话还是要多花点时间研究头条机制以及不同行业的定向问题,大客户部的话就是见得比较多了之后可以给出客户一些比较有用的建议,头条还是可以去尝试一下的,大公司,待遇也还算可以

声明:该文观点仅代表作者本人,我们系信息发布平台,仅提供信息存储空间服务。